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An Electrothermal Instability in a Conducting Wire: 
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P. M a w r  I and D. Bedeaux 1 

Received January 8, 1980 

An exactly solvable model of the ballast resistor is considered. Analytic expres- 
sions are obtained for the nonuniform stationary temperature distributions and 
the corresponding I -  V characteristics. A bifurcation point for Neumann bound- 
ary conditions is found and its analytic properties are discussed. It is found that 
the infinite wire limit plays a role analogous to the thermodynamic limit in 
statistical mechanics for equilibrium phase transitions. 
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act solutions; bifurcation point. 

1. I N T R O D U C T I O N  

In  a previous  p a p e r  (0 we discussed an e lec t ro thermal  ins tabi l i ty  in a 
conduc t ing  wire, the so-cal led bal las t  resistor. The  resistivity of the wire, 
which is su r rounded  by  a gas, is an  increas ing funct ion of the temperature .  
Both the t empera tu re  of the gas as well as the electric current  I through the 
wire (or the vol tage di f ference V between the end points)  are external ly  
control led.  U n d e r  sui table  condi t ions  an ins tabi l i ty  occurs  and  the wire can  
sustain inhomogeneous  s ta t ionary  t empera tu re  dis t r ibut ions.  The  I -  V char-  
acterist ic  co r respond ing  to these inhomogeneous  states conta ins  a segment  
where the current  is cons tan t  while the vol tage varies. 

In  this p a p e r  we shall  cons ider  a special  solvable  mode l  of the ba l las t  
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resistor in which the resistivity is zero 2 below a critical temperature T C and 
equal to a constant R 0 above T c. This system corresponds to the hot-spot 
model for superconducting microbridges introduced by Skocpol et a/. (2) 
These authors constructed an explicit solution for the case that the tempera- 
ture at the end points is essentially equal to the temperature of the bath and 
discuss the relevance of the model in connection with experimental data. 
Here we study this system for a different class of boundary conditions for 
which the temperature gradient is zero at the end points of the wire 
(Neumann boundary conditions). The resulting I - V  characteristics have a 
much richer structure than in the first case (Dirichlet boundary conditions), 
containing, e.g., a bifurcation point. 

On the basis of the analysis in this paper we shall discuss in a 
forthcoming article the stability properties of the inhomogeneous states. 

In Section 2 we discuss some general properties of the model. In 
Section 3 the stationary temperature distributions are given for Neumann 
boundary conditions. An infinite set of periodic inhomogeneous solutions is 
found to exist. For each solution an analytic expression is found for the 
voltage difference V as a function of the current I. All these solutions 
converge in the I - V  characteristic to a homogeneous solution in the same 
bifurcation point. We also find that the solutions satisfy a symmetry 
relation, for which a derivation in a more general case is given in the 
Appendix. An analysis along the same lines is given in Section 4 for 
Dirichlet boundary conditions. Finally, the behavior for a long wire is 
discussed in the last section. It is found that in the limit L ~ oc, where L is 
the length of the wire, V/L becomes a nonanalytic function of 1 for the 
inhomogeneous solutions. Thus this limit plays an analogous role to the 
thermodynamic limit in statistical mechanics for equilibrium phase transi- 
tions. 

2. THE MODEL; GENERAL PROPERTIES 

We consider a thin wire of length L along which an electric current l 
may flow. The wire is surrounded by a heat bath which is kept at the 
constant temperature T B. The temperature distribution as a function of the 
position and time T(x, t) satisfies the equation 

c-~t T(x,t)=-~xO )t~O T(x,t)-q[T(x,t)- T B ] + I 2 R  for 0 < x < L  

(2.1) 

2 If the resistivity is a finite constant  smaller than R o rather than zero, the model is still exactly 
solvable; see Appendix.  
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Here c is the specific heat per unit of length, ~ is the heat conductivity of 
the wire, q is the heat transfer coefficient to the heat bath, and R is the 
resistance of the wire per unit of length. In principle all these quantities 
depend on the local temperature T(x,  t). 

In this paper we shall restrict ourselves to the discussion of the 
stationary states for which the temperature distribution satisfies 

d X d T(x)  - q[ r ( x )  - TB] + I2R = 0 (2.2) 
-dTx 

In particular we shall consider the following idealized model: 

R ( T )  = R o O ( r -  T~) (2.3a) 

q ( r )  = q0 (2.3b) 

X(T) = •0 (2.3c) 

Here O is the Heaviside function, O(s) = 1 for s > 0 and O(s) = 0 for s < 0. 
Equation (2.3a) implies that the wire is superconducting below T~ and has a 
constant resistivity above T C. The coefficients q and ~ are assumed to be 
constants. 3 

Without loss of generality we may take the zero of the temperature 
scale at the bath temperature, or equivalently we put 

Te = 0 (2.4) 

in Eqs. (2.1) and (2.2). Furthermore, we introduce the following dimension- 
less parameter instead of the position x: 

y =-(q/~)l/2x with 0 < y < (q/?t)=/eL =-YL (2.5) 

We also define the following temperature: 

T h =-- I2Ro/q (2.6) 

Using Eqs. (2.3)-(2.6), one finds from Eq. (2.2) the following equation for 
the stationary states: 

d 2 d__~_ ~ d 
dY i T(y)  - T (y )  + Th|  ) - Tc) = dY 2 T(y )  + ~-~ ~(T)  = 0 (2.7) 

where the "potential" ~ is defined by 

~( r )  =--for[ rh O(r - r~ ) - r ] dr (2.8) 

It follows from Eq. (2.7) that the following function is a constant along the 

3 It is easy to extend the subsequent analysis to the case that q and X have different values 
below and above T~. 
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wire (1) in the stationary state: 

H =---�89 ,~(r) 

The potential may  easily be calculated and one finds 

~ ( T ) =  T h ( T - T c ) O ( T - T c ) - � 8 9  - 
- � 8 9  Th) 2 

(2.9) 

for T < T c 

for T > T~ 

(2.10) 

as well as Dirichlet boundary  conditions 

T(O) = T(yL)= T B = 0 (2.13) 

The latter are usually satisfied in good approximat ion in ballast resistor 
experiments. 

(2.12) 

Fig. l. The potential function q~(T) for three values 
of T h = Ro12/q. 

-~ydT y = 0 -  dT~ Y=Yr ~- 0 

where 

'1'h =--�89 Th(Th -- 2Tr (2.11) 

The potential is parabolic for T > T C as well as for T < Tc. The point  
T = T~ is a c o m m o n  point  of both parabolas.  We also see that the potential 
has one max imum if T~ > T h = I2Ro/q. If 0 < T c < T h the potential has 
two maxima,  at T = 0 and at Th, and one minimum, r ~ - �89 T~ 2 at T c. See 

also Fig. 1. The possibility of having two maxima for sufficiently large 
values of the current I plays an essential role in our analysis of the nature 
of the stationary states. 

In  order to make the description of the model  complete, boundary  
conditions at x = 0 and x = L (or alternatively at y = 0 and y = YL) must  
be specified. In  the following sections we shall consider N e u m a n n  bound-  
ary conditions. 
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Along the wire one may distinguish two different regions: 
(i) Cold sections, T(y) < T c. In these sections Eq. (2.7) reduces to 

,/2 T = T ( 2 . 1 4 )  
dy 2 

with solutions of the general form 

T(y )  = A ,e  y + A2e-Y (2.15) 

(ii) Hot sections, T(y)  > Tc. In these sections Eq. (2.7) reduces to 

d 2 
- - T =  T -  Th (2.16) +2 

with solutions of the general form 

T(y )  = T h + A3e y + A4e-Y (2.17) 

The amplitudes A 1, A 2, A 3, and A 4 must be chosen such that at the end 
points of the wire the boundary conditions are satisfied. Furthermore, the 
cold and the hot sections should be joined together in such a way that Eq. 
(2.7) is satisfied also at the transition points y~. This is the case if 

T and d T / d y  are continuous at y =y~ (2.18) 

Using the conditions specifying the cold and the hot regions and the 
continuity of T, it follows immediately that 

T(yc) = T C (2.19) 

Furthermore, we note that if the amplitudes in Eqs. (2.15) and (2.17) are 
chosen such that the corresponding temperature distributions give rise to 
the same value of H [cf. Eq. (2.9)], then d T / d y  is automatically continuous 
in view of the continuity of T in y~. 

In our analysis we also need the expression for the voltage difference V 
between the end points of the wire, 

V =  f o L R ( T ( x ) ) I d x = ( • / q ) l / 2 I R o f o Y L O ( T ( y ) ) d y  (2.20) 

Obviously V is proportional to the total length of the hot (T > T~) sections 
along the wire. 

3. S T A T I O N A R Y  S T A T E S  FOR N E U M A N N  B O U N D A R Y  
C O N D I T I O N S  

We first give the homogeneous solutions of the equation for the 
stationary states, Eq. (2.7). As is obvious from this equation, homogeneous 
solutions exist for temperatures such that the potential q~ has a maximum. 
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This leads to one homogeneous solution 

T ( y )  = 0 with V =  0 (3.1) 

for all values of T h and therefore of the current. If T h > T c there exists an 
additional homogeneous solution 

T ( y )  = T h =- I 2 R o / q  with V = IRoL (3.2) 

Note that both stationary homogeneous solutions satisfy the Neumann 
boundary conditions. 

We now consider inhomogeneous stationary temperature distributions. 
We shall first study distributions with one cold section for 0 < y < Yc and 
one hot section fory  c < y < YL" The distributions in these sections are given 
by 

T ( y )  = ( - 2 H ) l / 2 c o s h y  for 0 < y < yc (3.3) 

T ( y )  = r h - [2 (0h  - H ) ] l / 2 c o s h ( y L  - yc) for Yc < Y < YL (3.4) 

These solutions are indeed of the form given in Eqs. (2.15) and (2.16), 
respectively. Moreover, they satisfy the Neumann boundary conditions, Eq. 
(2.12). The amplitudes, which depend on the "conserved" quantity H, have 
been chosen such that Eq. (2.9) is satisfied in both sections. An immediate 
consequence of Eqs. (3.3) and (3.4) is that these solutions only exist if 

H < 0 and H < Oh (3.5) 

At the transition point y~ between the cold and the hot sections the 
temperature is equal to T~ [cf. Eq. (2.19)], and hence 

( - 2 H ) l / 2 c o s h  y~ = T~ = T h - [2(~ h - H ) ] l / 2 c o s h ( y L  -- y~) (3.6) 

It follows from the second equality that 

T h > T c (3.7) 

which is the condition for the existence of two maxima in the potential. The 
inhomogeneous solution therefore only exists for currents such that the 
potential has two maxima. 

Solving y~ and YL - - Y c  from Eq. (3.6) one obtains 

yc = arc cosh[ (0~/H )1/2] (3.8) 

y L - - y ~ = a r c c o s h ( [ ( O h - - O ~ ) / ( O h - -  H ) ]  1/2) (3.9) 

where 

0 c -  = - 1 U  (3.10) 
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It follows from these equations that 

H > ,~c (3.11) 

Adding Eqs. (3.8) and (3.9), one obtains 

YL = arcc~ ] + arc cosh {[(r h --~c)/(e~h- H)] 1/2} 
= a r c c o s h ( [ - H ( O h -  H ) ] - ' / 2 ( H  + �89 ) (3.12) 

where we used the addition theorem 

larccoshx __ arccosh y[ = arccosh[ xy +_ (x 2 -  1 ) ' / 2 ( y ' -  1)'/2] (3.13) 

Equation (3.12) for H may be solved by inversion and one obtains one 
solution 

U(I; L) = H(z; YL) 
- 1  

= - T I l l  + z sinh~y L + (cosh yL)(1 + z2sinh2vL) -1/2] (3.14) 

where we have introduced the variable 

2To 2qTc ( 2qTc/Ro ) '/2 
z(1)=~ l - ~ = 1 -  ~ ~ Iz -1~- 7 (3.15) 

The solution has been chosen consistent with the inequalities given in (3.5) 
and (3.11). In terms of the new variable one has 

0h = 2T~2z( 1 - z) -2 (3.16) 

Note that for the inhomogeneous solution, T h > To; consequently, - 1 < z 

< 1, while furthermore sign q>h = sign z. 
Substituting the solution (3.14) into Eqs. (3.8) and (3.9), one obtains 

for the lengths of the cold and the hot sections 

Yc(Z; YL) = la rccosh[  z sinh~L + (cosh yL)(1 + z2 sinh2yL)l/2] (3.17a) 

-- Yc(Z; YL) = �89 c o s h [ -  z sinh~L + (cosh yL)(1 + z2sinh~L) 1/2 ] YL 

(3.17b) 

where we have used Eq. (3.13) for x = y .  It follows from these equations 
that 

Yc(Z; YL) = YL - Yc( - z; )eL) (3.18) 

This implies that the transformation z-~ - z ,  i.e., 1 4  I '  = l[(lZRo/qTc) - 
1]-1/2 interchanges the length of the hot and the cold sections. Note that 
for z = 0 the length of the hot and the cold sections are both equal to �89 
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This relation suggests the introduction of the following parameter: 

"~=2yc /y l . - I  with - 1  <7~< 1 (3.19) 

This implies that 

yc -- �89 + V)YL and y/~ - y ~  -- �89 - u (3.20) 

It follows from Eq. (3.17) that sign 2/-- sign z. Using Eqs. (3.13) and (3.17a) 
and the identity larc sinhx[ -- arc cosh[(x z + 1)l/~], one then obtains 

,/(z; YL) = (1/yL)arc sinh(z sinh YL) (3.21) 

This parameter is an antisymmetric function of z, 

V(z; yr)  = - V ( - z ;  Y~) (3.22) 

which is equivalent to Eq. (3.18). 
The voltage difference between the end points of the wire for the 

above solution is given by [cf. Eq. (2.20)] 

V(I; L) = lRo(X/q)'/2[yi. -yr  YL)] = �89 - y(z; YL)] 
= �89 IRoL [ 1 - (1/yL)arc sinh(z sinh YL) ] (3.23) 

One may immediately evaluate the value of V in the following three cases, 
corresponding to z = - 1, z = 0, and z ~ 1: 

V(I  = (qTc/RO)'/2; L)  = L(qTcR0) l /2  = LRoI (3.24a) 

V( I = (2qTc/ Ro)l/2; L) = L( kqTcRo) 1/2 = �89 LRol (3.24b) 

lira V(I; L) = 0 (3.24c) 
I - -+~ 

It follows from Eq. (3.23) and the antisymmetry of ~, [Eq. (3.22)] that 

V(I; C ) / I  + V(I'; L ) / I '  = RoL (3.25) 

with 

I ' =  I[ ( I2Ro/qT~)-  1] -1/2 (3.26) 

The derivative of V with respect to I is given by 

d V  V 1 d 
dI I ~ IRoL--~ Y(z; YL) 

V - I  R ~  I/2(sinh YL)[ ( 1 -  z)(1 + zZ sinhZyc)- 1/2 ] (3.27) 

One may again evaluate dV/dI  in the three cases corresponding to z = - 1, 
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z = 0 ,  a n d z = l :  

d__Vdi l=(qTc/Ro),/2 = R~ 1 -  2yc tanh YL) (3.28a) 

dl/" ,2 = R~ 1 - -~-1 sinh YL) (3.28b) 
dI l=(2qTc/Ro) / YL 

lira dV I-->~ " - ~  ~--" 0 (3.28c) 

It follows furthermore from Eqs. (3.27) and (3.23) that 

dV/d I  < V I I  < RoL (3.29) 

One may also show a stronger inequality for z > 0: 

d V / d l  < 0 for I >1 (2Tcq/Ro) 1/2 (3.30) 

This inequality follows by proving the fact that (d /dz ) (dV/d l )> 0 for 
0 < z < 1 and by observing that dV/d I  approaches zero [cf. Eq. (3.28c)] 
for z ~ 1. 

It is interesting to consider in more detail the behavior of the solution 
for z $ -  1, i.e., ThST ~ or I$(qTJRo) I/2. In this limit the voltage [cf. Eq. 
(3.20a)] approaches the value of the voltage for the homogeneous solution 
[cf. Eq. (3.2)] for the same value of the current. Consequently, the point 

I = (qTJRo) 1/2, V = L(qT~Ro) I/2 (3.31) 

is a bifurcation point in the I -  V characteristic. As follows from Eqs. (3.28a) 
and (3.7), the two branches for the inhomogeneous and the homogeneous 
solutions approach the bifurcation point from a different direction. One 
may show that the temperature distributions of both the inhomogeneous as 
well as the homogeneous solution become identical at the bifurcation point 

lim T(y) = T c (3.32) 
I$(qT,/Ro) ~/2 

Finally we consider inhomogeneous solutions with more than one cold 
or hot section. Solutions of this nature may easily be constructed by 
considering an inhomogeneous solution of the type given above on a wire 
of length L/n,  where n is an integer. By repetition of this solution on the n 
segments of the wire of length L, one obtains a solution with several hot 
and cold sections which satisfies the boundary conditions. The solutions are 
periodic with a period 2L/n.  One may easily show that such periodic 
solutions are the only inhomogeneous solutions that exist (cf. also Ref. 1). 
Most of the properties of the periodic solutions for n >/2 are directly 
related to those for n = 1. In particular, the value H, for these solutions is 
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given by 

H,(I; L) = H(z; yL/n) (3.33) 

in terms of the solution given in Eq. (3.14) for the n = 1 case. 
The voltage difference between the end points of the wire for the 

periodic solution is given by [el. Eq. (2.20)] 

= �89 - y(z; yL/n)] 

= �89 - -~Larcsinh[zsinh(yr/n)]) (3.34) 

The derivative of V, with respect to I becomes 

dV, V, [ ~k Xl/2 
d '  - I nR~ q )  ( 1 -  z)(sinh Y--~)(1 + z2sinh 2 YLn ) - , /Z  (3.35) 

It follows as in the n = 1 case that all periodic solutions converge to 
the homogeneous solution at the same bifurcation point given by I 
= (qT,,/Ro) 1/2, V = L(qTcRo) I/2 in the I - V  characteristic. Instead of Eq. 
(3.28a) one now obtains 

dVndI i=(qrc/go),/2= R ~  2-En tanh -~  (3.36) 

so that all branches approach the bifurcation point from a slightly different 
direction. In the limit n ~ ~ one finds 

lira dV = - RoL (3.37) 
n---~oo ~ i=(qrc/Ro)l/2 

One may also study the behavior of the solutions for n ~ oo for all 
values of the current larger than (qTJRo) 1/2. Using Eqs. (3.3), (3.4), (3.14), 
and (3.17), with yL/n instead of YL, it follows that 

lim T(y )=  T~ (3.38) 
n ---> o o  

The n ~ oo value is therefore again homogeneous and is the analog in the 
present case of the unstable homogeneous solution discussed in Ref. 1. It 
should be emphasized, however, that T(y) = T~ is not a real solution of Eq. 
(2.7). Using Eq. (3.34), one finds 

lim Vn(I; L)= I R o L T J T  h = qLT~/I (3.39) 
n-.--> ~.) 

which determines this limiting I -  V characteristic. 
If one chooses the current such that z = 0, i.e., I = (2T~q/Ro) 1/2, it 

follows from Eq. (3.34) that 

V,(I  = (2T~q/Ro)l/2; L) = �89 '/2= �89 (3.40) 
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Fig. 2. The 1- V characteristics for Neumann boundary conditions. The length of the wire 
has been chosen such thaty L = 6. The dashed lines correspond to the homogeneous solutions. 
The solid lines correspond to the inhomogeneous solutions for n = 1 and n = 2. The dash- 
dotted line corresponds to the n ~ o0 limit. 

This implies that  all characteristics cross each other  at the point  I 
= (2T~q/Ro) 1/2, V= �89 1/2. It follows f rom Eqs. (3.34), (3.35), 

and (3.40) that the derivatives at this point  are given by 

dVnl=(2Tcq/Ro),/21 ( ) dI = RoL 1 - 2  n s inhYL (3.41) 
y/~ n 

In  view of the fact that  the funct ion y - 1  arc sinh([z[sinh y )  is a monotoni-  
cally increasing funct ion of) ;  for 0 < [z[ < 1, one has 

V , + I ( I  ) > V, (1)  for 0 < z(I) < 1 (3.42) 

V ~ + , ( I ) <  V,(I) for - 1  < z ( I ) < 0  

The corresponding I -  V characteristics are plotted in Fig. 2 for the n = 1, 2 
and n -~ oo solutions, choosing a small value o f y  L. 

4. STATIONARY STATES FOR DIRICHLET BOUNDARY 
C O N D I T I O N S  

Let us now study the solutions of Eq. (2.7) with Dirichlet boundary 
conditions, Eq. (2.13). In this case there is only one homogeneous  solution 

T(y )  = 0 with V--- 0 (4.1) 

In addition, inhomogeneous solutions exist. 
We shall  now consider solutions with cold sections for 0 < y < Yc and 

YL - -  .Yc < Y < YL and a hot section for y~ < y < YL - Y~ which are symmet- 
ric around the center of the wire. The temperature distribution for these 
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solutions is 

T(y)  = (2H) ' /2  sinh y, 

= T h - [ 2 ( +  h - H ) ] ' / 2 c o s h ( � 8 9  

= (2H)  '/2 sinh(y L - y), 

These solutions are again of the form given 

for 0 < y < y ~  (4.2a) 

for y ~ < y < y L - - y ~  

(4.2b) 

for YL--Yc <~ Y <<- YL 

(4.2c) 

in Eqs. (2.15) and (2.16), 
respectively, and satisfy Dirichlet boundary conditions, Eq. (2.13). The 
amplitudes, which depend on the "conserved" quantity H, have been 
chosen in such a way that Eq. (2.9) is satisfied everywhere in the wire. At 
the end of this section we shall show that all inhomogeneous solutions for 
Dirichlet boundary conditions are of the form given in Eq. (4.2). A 
consequence of Eq. (4.2) is that these solutions only exist if 

0 < H < q'h (4.3) 

It follows from this inequality that T h > 2 T c. At the transition points Yc and 
Yr - Y c  between the hot and the cold sections the temperature is equal to 
T c [cf. Eq. (2.19)], and hence 

(2H)l/2sinh yc = T~ = T h - [ 2 ( ~  h - -  H)]l /2cosh( �89 - y~ )  (4.4) 

Solving Yc and �89 --Yc from this equation, one obtains 

Yc = arc sinh[ ( - ~ c / H )  1/2 ] (4.5) 

~ YL -- Y~ = arc cosh ~h -- H (4.6) 

Adding the last two equations, one obtains 

1 [( ~),/2] [ ( )  ] 
~ y L = a r c s i n h  - - ~  +a rccosh  ~ h - ~ c  -V2 

~h -- H 

= arcsinh{ [ H(~  h - H ) ] - 1 / 2 ( H  + �89 } (4.7) 

where we have used the identity 

arc Sinhx +_ arc cosh y = arc sinh[ xy +_ (x 2 + 1)l/2(y 2 -  1) '/2] (4.8) 

Equation (4.7) for H may be solved by inversion and one obtains two 
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solutions for each value of the current: 

H+_ = r?  ( z cosh2(SL/2)  - 1 

+ sinh(yL/2 ) [ z 2 c o s h : ( y L / 2 )  - t]  '/2) - '  

which are real and positive [cf. Eq. (4.3)] if 

z ( I )  = 1 - 2 T c / T  h = 1 - 2 q T J R o  I2  >1 c o s h - ' ( y L / 2 )  = Zm~ . 

Substituting H into Eq. (4.5), one obtains 

where we 

(4.9) 

(4.10) 

+ ( y~- - �89 arc cosh z c o s h 2 ( y L / 2 )  

_+ sinh(yL/2 ) [ z : c o s h 2 ( y L / 2 )  - 1] '/2} (4.11) 

used the identity [arcsinhx i - �89 arccosh(2x 2 + I). Using Eq. 
(3.13), one may easily show that 

Y f  + Y~+ = �89 YL (4.12) 

This formula implies that the total lengths of the cold and the hot sections 
are interchanged if one goes from the minus to the plus solution. It also 
follows from Eq. (4.11) that 

0 < YZ <�88 < Y~+ "<<�89 (4.13) 

We introduce again a parameter 7, 

v = 4 y + / y L - - l = - - 4 y j / y L + l  with 0 < r < l  (4.14) 

This implies that 

y ?  = �88 YL(1 • y)  (4.15) 

It follows from Eq. (4.11), using also Eq. (3.13), that 

Y = ( 2 / y L )  arc cosh [ z cosh(yL/2 ) ] (4.16) 

The voltage difference between the end points of the wire is given by 
[el. Eq. (2.20)] 

V +- = I R o ( X / q ) l / 2 ( y  L - 2yc -+) = � 8 9  ~- "~) 

= ~ I R o L { 1  -7- ( 2 / y r ) a r c c o s h [ z c o s h ( y L / 2 ) ] )  (4.17) 

It follows immediately that 

V + + V -  = I R o L  (4.18) 
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One may evaluate the voltage for z--> 1 and one finds 

lim [ V +- (I;L)/I]  = �89 -T- 1) (4.19) 
1 - - ~  

The two solutions become identical for the lowest value Zmi . of z [cf. Eq. 
(4.10)]. The corresponding value of the voltage is given by 

V+- ( I = (2qTJ Ro)'/2[ 1 - cosh-'(yL/2) ]-'/2,L) 

= �89 IRoL 

= �89 1/2[1 - cosh-l(yL/2)] -1/2 (4.20) 

The derivative of V with respect to the current becomes 

dV +_ V +_ ( ~ )1/2 ( YL )( YL )-1/2 
dI - -I- -T-2R o ~ ( l - z )  c o s h T  z2cosh 2 ~ - 1  

(4.21) 

For z ~ 1 one may again evaluate this derivative and one obtains, using 
also Eq. (4.19), 

V-  lira dV+- - lim _ 1 RoL( 1 ~ 1) (4.22) 
l-->o0 dI I -~  I 2 

At z = Zmi n one finds 

dI (dV'+-)-lZ=Zmi. d--V . . . .  ,~ = y = 0 (4.23) 

The current has a minimum as function of the voltage for the voltage given 
in Eq. (4.20). One may prove the following inequalities: 

dV+/dI < 0 and d V - / d I  > RoL (4.24) 

These inequalities follow by proving the fact that •177 0 
for Zmi n • Z < 1 and by observing that dV+/dI approaches zero while 
d V - / d I  approaches RoL for z---> 1. It may be concluded from these 
inequalities that for Dirichlet boundary conditions the current is a single- 
valued function of the voltage for V > 0. The corresponding I - V  charac- 
teristic is plotted in Fig. 3. 

We shall now prove that solutions of the form given in Eq. (4.2) are the 
only existing inhomogeneous solutions for Dirichlet boundary conditions. 
In view of the fact that the temperature is equal to zero at y = 0, the section 
adjacent to y = 0 is necessarily cold and has the temperature distribution 
given in Eq. (4.24) for 0 < y < Yc, where yc is the first transition point 
along the wire. Similarly, the temperature for Yc' < Y < YL, where y~ is the 
last transition point along the wire, has the form given in Eq. (4.2c). Since 
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Fig. 3. The 1 - V  characteristic for Dirichlet 
boundary conditions for YL = 6. The dashed lines 
correspond to the homogeneous solution and the 
solid line to the inhomogeneous solution. 

m _  

I / 

I 

~%?X/R. i 

T(yc) = T(ys Tc, it follows thatys = YL -Yc  as in Eq. (4.2c). It remains 
to be shown that no transition points exist for yc < y < Y L -  Yc" This is 
equivalent to showing that no cold section can exist in this region. Assum- 
ing such a cold section to exist, the solution must be of the form 

T(y )  = ( - 2 H  )l/2 cosh[ y - l_r ,,', 2 u c  + Y'"c) ] (4.25) 

where y"  and y'"c are the transition points at the end of the cold section. 
Note that the amplitude is always determined by the constant value of H. 
Since H is necessarily positive according to Eqs. (4.2a) and (4.2c), and 
would have to be negative according to Eq. (4.25), it follows that no cold 
section can exist for y~ < y < y/. - y~. Consequently, the wire is hot for 
Yc < Y < YL -Y~  and the solution must have the form given in Eq. (4.2b). 

5. DISCUSSION: THE LONG WIRE 

In the preceding sections we have derived analytic expressions for the 
nonuniform stationary-state temperature distributions as well as for the 
corresponding I -  V characteristics. This has been done both for Neumann 
and Dirichlet boundary conditions. This analysis has been performed for 
all values of the length of the wire. In practice, however, the wire is usually 
long in the sense that 

L >> ( X / q ) l / 2 ~ y  L >> 1 (5.1) 

A typical value o f y  L is 50. (2) It is therefore of interest to discuss the nature 
of the I -  V characteristics for this case in more detail. 

We first consider inhomogeneous solutions for Neumann boundary 
conditions with periodicity n = 1. Using Eq. (3.21), one has in the limit of 
an infinite wire 

lim y(z;  YL) = signz for z 4= 0 (5.2) 
Yr ~ oo 
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Therefore one finds in the same limit [cf. Eq. (3.23)] 

lirn [ V(I; L ) / L  1 = �89 - signz) for z ~ 0 (5.3) 
.y L--,> oo 

This implies that for z > 0, i.e., I > (2qTc/Ro) 1/2, the I - V  characteristic 
becomes identical with the one for the uniform zero-temperature solution. 
Similarly, for z < 0, i.e., (qTc/R~) ~/2 < I < (2qTJRo) ~/2, it becomes identi- 
cal with the one for the homogeneous T(y)= T h solution (cf. also Fig. 4). 
The asymptotic behavior is given by 

7(z; YL) = signz(1 +y[~lnlzl) for IzleYL>> 1 (5.4) 

and for the voltage 

V ( I ; t ) = � 8 9  for IzleYL>>l (5.5) 

In order to study the behavior of the I - V  characteristic for very small 
values of z it is convenient to consider the behavior of z(7; YL) for large 
values o f y  L. Inverting Eq. (3.21), one finds 

lira z(7; YL) = lim (sinhTyL/Sinhyc) = 0 for 171 ~ 1 (5.6) 
yL--+ oo yL--->oo 

Similarly, one finds [cf. Eq. (3.15)] 

lim 1(7; YL) = lim (2qTc/Ro[1 - z(7; yc)]} '/2 

= (2qTc/Ro) for I'rl 1 (5.7) 

We note that keeping 7 constant is equivalent to keeping V/1L constant. 
Equation (5.7) implies that the I -  V characteristic has a horizontal section 
where V / L  varies between zero and (2qTcRo) I/2, where 1 has the value 
given in Eq. (5.7) (cf. Fig. 4). This section of the I - V  characteristic 
corresponds essentially to the coexistence of two homogeneous phases, one 
cold ( T - - 0 )  and one hot ( T =  T h ---2To), with variable relative lengths. 
The asymptotic behavior is given in this case by 

z(-y; YL) "- e-(1-r)YL - e-(l+e)YL for (1 - I y I ) y c  >> 1 (5.8) 

T "" 1 i N.B.C.  , [ 
/ 

/ 
/ 

/ /  

/ . . . .  

i J 

Fig. 4. The I -  V characteristics in the long-wire limit. 
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and for the current 

I(y; YL) = (2qTJRo)'/2( 1 + �89 e-(~-v)s~ - �89 e-('+v)yL) 
(5.9) 

for (1 -IVI)YL >> 1 

For n > 1 the same analysis remains valid if one replaces YL by yL/n. 
For Dirichlet boundary conditions we use Eq. (4.16) and find [see also 

Eq. (4.10)] 

= lim Zmin--- 0 (5.10) lim y(z; YL) 1 for z >yL-~oo 
YL - +  CO 

For the voltage [cf. Eq. (4.17)] one thus obtains 

lim [V+-(1;L) /L]=�89 for z > 0  (5.11) 
Y r  ~ oo 

The I -  V characteristic for V § therefore becomes identical with the one for 
the uniform zero-temperature solution, while the V-  characteristic be- 
comes the one for the uniform T(y )=  T h solution, both for I 
> (2qTc/Ro) j/2 [cf. Fig. 4]. The asymptotic behavior is given by 

y ( z ; y L ) =  l+(2 /yr ) lnz  for zeyL/2>>l (5.12) 

and for the voltage 

V-( I ;L)=�89  for zeY~/2>>l (5.13) 

For very small values of z we consider the following limit: 

lim z(7; YL) = lim [cosh(�89189 ] = 0 for 
yL-+oo yL-)oo 

y 4 : l  

(5.14) 
and similarly [cf. Eq. (5.7)] 

lim 1(7; YL) = (2qTcRo) ~/2 for y 4:1 (5.15) 
y L ~ o o  

Therefore the I - V  characteristic has precisely the same horizontal section 
in this limit as in the Neumann case (cf. Fig. 4). The asymptotic behavior is 
now given by 

z(y;yr)=e-(~-v)YL/2+e-(~+v)YL/2 for �89  (5.16) 

and for the current 

I(7; YL) = (2qTc/Ro)'/2( 1 + �89 e-(1-v)yL/2 + �89 e-( '  +~)yL/2) 
(s.17) 

for � 8 9  >>1 

It is interesting to note that the limit Yr -+ oo may be compared to the 
so-called thermodynamic limit in equilibrium statistical mechanics. In 
equilibrium statistical mechanics it is necessary to take this limit in order to 
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obtain the nonanalytic behavior of thermodynamic functions correspond- 
ing to equilibrium phase transitions. In the present case one must take the 
analogous limit YL ~ oo in order to obtain the nonanalytic behavior of V / L  
as a function of I corresponding to a "dynamical phase transition." 

A P P E N D I X  

In this appendix we consider the slightly more general model for which 
the resistivity is given by 

R ( T )  = R c + ~'Ro s i g n ( T -  To) ( a l )  

where R~ and R 0 are positive constants such that 2R c >/ R 0. If 2R~ = R 0 
this model reduces to the one considered in the text. It is convenient to 
introduce the following parameter: 

z (  I ) - - (2  R J  Ro)(1 - q T J  IZRc ) 

= 1 - 2(T~ - T f ) / ( T  h - T f )  (A2) 

where 

Tf ~ q - 'I  2(Rc _ �89 R0), Th = q - l I 2(Rc + �89 R0) (A3) 

For the model in the text Tf = 0 and T h = q- l lZR0;  consequently z reduces 
to the parameter introduced in Eq, (3.15). One may easily verify that the 
equation for the stationary state can be written as 

dY 2 A T ( y )  - A T ( y )  + T c -~o - z  [z + s ignAT(y) ]  = 0 (A4) 

where 

AT(y)  ~ r ( y ) -  r c (15) 

For 2R~ = R 0 this equation is equivalent to Eq. (2.7) used for that case. One 
may now easily verify the following theorem: 

Theorem.  If A T ( y )  is a solution of Eq. (A4), then 

(2Rc/Ro)- Z (_~)2  
A T ' ( y )  =__ ( 2 R J R o )  + z A T ( y )  = -- A T ( y )  (A6) 

is also a solution of Eq. (A4) with z' -- - z .  

This theorem is in general only useful for Neumann boundary condi- 
tions, which will also be satisfied by T' = A T'  + T c if they are satisfied by 
T = A T + T c. This is not the case for Dirichlet boundary conditions. In the 
transformation given in Eq. (A6) the lengths of the cold (A T < 0) and the 
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hot (AT > 0) sections are interchanged. This is the "symmetry relation" 
given in Eq. (3.18). 

Explicit solutions for the more general model, Eq. (A1), may easily be 
constructed by appropriately modifying the analysis in the text. In fact, Eq. 
(A4) may be rewritten in the form 

d 2 
dY 2 [ T ( y )  - rf] - [ r ( y )  - Tf] (A7) 

+ ( r h -  ( r < -  rs) ) = 0 

This equation is identical with Eq. (2.7) if one replaces 7", Th, and T c by 
( T -  Tf), ( T  h - Tf), and ( T  c - TS). The subsequent results may easily be 
modified accordingly. 

In the general case also the cold section contributes to the voltage 
difference between the end points of the wire. This results in the existence 
of a second bifurcation point for Neumann boundary conditions for 

I = [ q T r  - �89 1/2, g = L [ q T ~ ( R c  - �89 1/2 

(note that z = 1 at this point). The other bifurcation point is given by 

] [ = [ q r c / ( e  c .-1- IRo)]l/2, V =  L [ q r c ( R  c + 1/~0)]1/2 

(z = - 1 at this point). For the model treated in the text the first bifurcation 
point vanishes at infinity ( I ~  oe and V ~  0). 
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